

Software Specifications

Get to know more about the Z93E series Notebook with a detailed look at the software specifications.

he information contained in the chapter can be quite useful when you are troubleshooting the system's hardware. Each item has its individual usage for you to understand the software side of the notebook's architecture.

1. Introduction

This BIOS specification describes the major features of key components and system BIOS, the usage of general purpose input/output (GPIO) pins of south bridge (SB) and embedded controller (EC), the hardware IRQ routing and resource allocation, setup menu, system power management mechanism, system security policy, and so on.

The system BIOS is designed to comply with all industry standards, specifications, and design guides of PC/AT system including:

- PC 2001 System Design Guide, Version 1.0
- Advanced Configuration and Power Interface (ACPI) Specification, Revision 1.0b & 2.0
- Simple Boot Flag Specification, Revision 2.0
- PCI BIOS Specification, Revision 2.0
- Plug and Play BIOS Specification, Version 1.0A
- Extended System Configuration Data (ESCD) Specification
- System Management BIOS (SMBIOS, i.e. DMI) Reference Specification, Version 2.3
- System Management Bus BIOS Interface Specification, Revision 1.0
- BIOS Boot Specification
- Multiprocessor Specification, Revision 1.4
- Universal Serial Bus Specification, Revision 1.1 & 2.0
- Universal Host Controller Design Guide
- Universal Serial Bus PC Legacy Compatibility Specification
- Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0
- PCI Express Base Specification, Revision 1.0
- PCI Local Bus Specification, Revision 2.3
- PCI Bus Power Management Interface Specification

2. Hardware Overview

2.1. Key Components

The onboard key components and optional mini-PCI modules are listed at table 2-1 and 2-2.

		J	
ltem	Vendor	Part's Name	Features
CPU	Intel	Dothan	Geyserville III Speed-Step Thermal Monitor 2
North Bridge	Intel	915-GM	
South Bridge	Intel	ICH6-M	
VGA	Intel	915-GM	
USB	Intel	ICH6-M	
LAN	Realtek	RTL8100CL	
Cardbus	Ricoh	R5C841	
IEEE1394	Ricoh	R5C841	
Azalia Audio	Realtek	ALC880	
Clock Gen.	ICS	ICS954213	
Thermal	MAXIM	MAX6657	
Azalia Modem	Realtek	ALC880	
Super IO	ITE	ITE8705	
Embedded	Mitsubishi	M38857	
Controller			

Table 2-1 Key Component List

Table 2-2 Optional Component List

ltem	Vendor	Part's Name	Revision
Wireless LAN	Intel	CalexicoChipset	
TV turn Card	AVerMedia	M103 & M104	
FM module	MAOTEK	JFR-600	
Blue Tooth	ASUS	BT-183	

2.2. Bus Number Allocation

The bus number allocation for PCI-to-PCI, PCI Express Graphic and CardBus bridges are listed at table 2-3.

Device	Bus#	Dev#	Fun#	Primary Bus#	Secondary Bus#	Subordinate Bus#	Onboard Devices On Secondary Bus
PCI-to-PCI Bridge	0	30	0	0	1	2	LAN; CardBus; 1394; MiniPCI (WLAN)
CardBus Bridge	1	1	0	1	2	2	
P.E.G.* Bridge	Х	Х	X	Х	X	x	PCI Express Graphic Controller

Table 2-	3 Bus	Number	Allocation
	0 003	Number	Allocation

*: P.E.G. – PCI Express Graphic

2.3. IRQ Routing of PCI Devices

The IRQ routing of onboard PCI chipsets and mini-PCI slot are shown at table 2-4.

Device	Vendor	IDSEL	Bus#	Dev#	Fun#	INTA	INTB	INTC	INTD
P.E.G. Bridge	Intel	*	0	1	0	PIRQA			
VGA	Intel	*	0	2	0	PIRQA			
Azalia Controller	Intel	*	0	27	0	PIRQA			
USB #0	Intel	*	0	29	0	PIRQH			
USB #1	Intel	*	0	29	1		PIRQD		
USB #2	Intel	*	0	29	2			PIRQC	
USB #3	Intel	*	0	29	3				PIRQA
EHCI	Intel	*	0	29	7	PIRQH			
IDE #0 (PATA)	Intel	*	0	31	1	PIRQC**			
Cardbus	Ricoh	AD17	1	1	0		PIRQC		
1394	Ricoh	AD17	1	1	1			PIRQD	
SD Card	Ricoh	AD17	1	1	2	PIRQB			
Memory Stick	Ricoh	AD17	1	1	3	PIRQB			
XD Picture Card	Ricoh	AD17	1	1	4	PIRQB			
LAN	Marvel	AD16	1	0	0	PIRQE			
MiniPCI1		AD19	1	3	0	PIRQG	PIRQH		
MiniPCI2		AD189	1	2	0	PIRQH	PIRQG		

Table 2-4 IRQ Routing of Onboard PCI Chipsets and mini-PCI Slot

: Chipset Internal Routing

**: Chipset Internal Routing at NATIVE mode

IRQs Available for PIRQA~PIRQH on PIC-Enabled O.S. are: 3, 4, 5, 6, 7, 11

IRQs Available for PIRQA~PIRQH on APIC-Enabled O.S. are: PIRQA – 16, PIRQB – 17, PIRQC – 18, PIRQD – 19 PIRQE – 20, PIRQF – 21, PIRQG – 22, PIRQH – 23

2.4. PCI Device IDs

The vendor/device and sub-system/sub-vendor IDs of onboard PCI devices are listed at table 2-5.

Device	Vendor	Bus	Dev.	Fun.	Vendor	Device	Sub-Vendor	Sub-System
					ID	ID	ID	IĎ
Host Bridge	Intel	0	0	0	8086	2590	1043	10B7
VGA	Intel	0	2	0	8086	2592	1043	1882
LPC	Intel	0	31	0	8086	2641	1043	10B7
PATA IDE	Intel	0	31	1	8086	266F	1043	10B7
USB0	Intel	0	29	0	8086	2658	1043	10B7
USB1	Intel	0	29	1	8086	2659	1043	10B7
USB2	Intel	0	29	2	8086	265A	1043	10B7
USB3	Intel	0	29	3	8086	265B	1043	10B7
EHCI	Intel	0	29	7	8086	265C	1043	10B7
Azalia controller	Intel	0	27	0	8086	2668	1043	10B3
LAN	Realtek	1	0	0	10EC	8139	1043	1045
Cardbus	Ricoh	1	1	0	1180	0476	1043	10B7

Table 2-5 Vendor/Device & Sub-System/Sub-Vendor IDs

1394	Ricoh	1	1	1	1180	0552	1043	10B7
SD Card	Ricoh	1	1	2	1180	0822	1043	10B7
Memory stick	Ricoh	1	1	3	1180	0592	1043	10B7
XD Picture Card	Ricoh	1	1	4	1180	0852	1043	10B7
Mini-PCI1	Intel	1	3	0	option	option	1043	10B7
Mini-PCI2	Intel	1	2	0	option	option	1043	10B7

The SSID/SVID of Modem is 1043/1966 in the codec.

2.5. Chipset Strapping

The strapping signals are used for static configuration. Table 2-6 and 2-7 show the strapping pins' driven states of SB and EC for the system.

			Table 2-6 ICH6	GPIO Definition
GPIO	I/O	Multiplex	Usage	Description
Pin	Туре	W/ Pin		
0		REQ_5#	NOT USED	N/A
1		REQ_6#	NOT USED	N/A
2		PIRQE#	PIRQE#	Not as GPIO
3		PIRQF#	NOT USED	Pull High 3V
4		PIRQG#	PIRQG#	Not as GPIO
5		PIRQH#	PIRQH#	Not as GPIO
6*		BMBUSY#	BMBUSY#	No GPIO6
7		None	NOT USED	Pull High 3V
8		None	EXTSMI#	EC's SMI event trigger pin
9		OC4#	OC4#	USB_OC_4#
10		OC5#	OC5#	USB_OC_5#
11		SMBALERT#	NOT USED	N/A
12		None	KB_SCI#	EC's SCI event trigger pin
13		None	SIO_SMI#	SIO's SMI event trigger pin
14		OC_6#	NOT USED	Pull High 3V
15		OC_7#	NOT USED	Pull High 3V
16	0	GNT6#	NOT USED	N/A
17	0	GNT5#	NOT USED	N/A
18*	0	STP_PCI#	STP_PCI#	Not as GPIO
19	0	None	PWRLED_1HZ	Power LED will be blinking at suspending state.
20	0	STP_CPU#	STP_CPU#	Not as GPIO
21	0	None	BACK_OFF#	Back light on/off control pin
				LOW – On, HIGH - Off
22**	N/A	N/A	N/A	N/A
23	0	None	FWH_WP#	Firmware Hub EEPROM write protection pin
24	0	None	802_LED_EN#	Indicates that Wireless LAN is on
25	0	None	CB_SD#	Assert LOW to meet power sequence of Ricoh's
				Cardbus controller before entering S3 state and keep
				asserted at S3.
26	<u> </u>	SATAU_GP	SAIA_DEI#0	Not as GPIO
27	<u> </u>	None	NOT USED	
28	I	None	OP_SD#	Avoid the Audio noise
				Before system runs the code of POST, pulls low.
	-			Before the ACPI, pull high. After the ACPI, free it.
29	<u> </u>	SATAT_GP		Main board revision identification pin#0
30		SATAZ_GP		Main board revision identification pin#0
31	<u> </u>	SATAJ_GP		
32	<u> </u>	ULKRUN#	CLKRUN#	INOT AS GPIU
33		None	CPUFAN_SPD_A	Indicate the CPU Fan speed
34	0	None	VVLAN_ON#	
			l	ILOW – ON, HIGH - OTT

35**	N/A	N/A	N/A	N/A
36**	N/A	N/A	N/A	N/A
37**	N/A	N/A	N/A	N/A
38**	N/A	N/A	N/A	N/A
39**	N/A	N/A	N/A	N/A
40		REQ4#	PANEL_ID0	Not needed for LCD supporting DDC
41		LDRQ1#	PANEL_ID1	Not needed for LCD supporting DDC
42**	N/A	N/A	N/A	N/A
43**	N/A	N/A	N/A	N/A
44**	N/A	N/A	N/A	N/A
45**	N/A	N/A	N/A	N/A
46**	N/A	N/A	N/A	N/A
47**	N/A	N/A	N/A	N/A
48	0	GNT4#	GAIN_AMP_K#	Add the voltage for audio of DVD. Let the Audio have
				loud volume.
				LOW – 6v/v, HIGH - Normal
49	0	CPUPWRGD	H_PWRGD	Not as GPIO

Table 2-7 M38859 GPIO Definition

Pin	_I/O	Usage	Description
	Туре		
2.0	0	KBCRSM	Connected to power button for triggering power button press and release
			events. Press 4 second turn off the system power.
2.1	0	KNC_P21	NOT USED, Pull High
2.2	0	BAT_LEARN	This pin is used for battery learning (refresh). Set it low for charging a
			battery or batteries and high for discharging a battery or batteries.
2.3		DJ_LED	Indicates that is the Audio enable
2.4	0	SET_PLTRSTNS	When setting this pin as high will gate the PCI_RST# signal from KBC,
			LAN, CardBus devices. When setting this pin as low, those devices will
			be reset by PCI_RST#.
2.5	0	CAP_LED	CAP Lock Indicator.
2.6	0	NUM_LED	Number Lock Indicator
2.7	0	SCROLL_LED#	Scroll Lock Indicator
4.0	0	KBC_EXTSMI	Any system management interrupt will be issued through this pin. It will
			notify the system that some events happened.
4.1	0	EMAIL_LED	Email received indicator
4.2	0	WATCHDOG	Should create a event to EC, then clean the timer.
4.3	0	BT_ON	Blue Tooth On/Off detection pin;
			LOW – Off, HIGH – On
4.4	0	KBCPURST_3Q	CPU reset signal from KBC
4.5	0	KBC_GA20	This pin from KBC gates A20.
4.6	0	KBCSCI_3Q	SCI pin to notify system of runtime or wake up events from KBC.
4.7	I/O	CLKRUN#	Standard PCI clock run protocol
5.0	Ι	BAT_LLOW#	When the pin is set as low, it represents that battery is in very low
			capacity.
5.1	I	FM_PSK#	FM Audio output pin;
			LOW – Speaker, HIGH – head phone
5.2	I/O	PWR_DJ_DETECT	Power Button press detect pin.
			LOW – Non_press, HIGH – Power button press
5.3	<u> </u>	CLR_DJ#	Clear SWDJ_EN# status.
5.4	I	BAI_SEL	Indicates the battery type
		DATA INL 00 "	HIGH – 8 Cell, LOW – 4 Cell
5.5		BAI1_IN_OC#	Low level indicates that battery is existed.
5.6	0	FAN_DA1	It controls the FAN speed. S3 should pull Low
5.7	0	PORI_BAR_IN	Set High For Port Bar
6.0		EMAIL#	It indicates that EMAIL button is pressed N/A
6.1		INTERNET#	It indicates that INTERNET button is pressed
6.2		MARATHON#	Read VID's voltage
6.3		DISTP#	It indicates that Power4 Gear button is pressed. Can use for PAD Lock.

6.4		ACIN	High level indicates that AC adapter is existed.
6.5	-	LID_KBC#	LID close/open detection pin;
			LOW – closed, HIGH – open
6.6	-	SWDJ_EN#	If software DJ button is pressed, it will be latched on SWDJ_EN# and let
			system know the software DJ have been launched. (GPI)
6.7	0	CHG_FULL_OC	In AC mode only, indicates the battery is full charge.
7.0	I/O	TPAD_DAT	N/A
7.1	I/O	NC	N/A
7.2	I/O	NC	N/A
7.3	I/O	TPAD_CLK	N/A
7.4	I/O	NC	N/A
7.5	I/O	NC	N/A
7.6	I/O	BAT_SMD	N/A
7.7	I/O	BAT SMC	N/A

2.6. System Management Bus Connections

The system has three independent system management bus (SMBus) interfaces on SB and EC chipsets, respectively. The devices connected to these 3 host interfaces are shown at table 2-10 and 2-11.

Device	Address	Usage
1 st DIMM Module	1010000xb*	Read DRAM timing and configuration stored on "Serial Presence Detect" (SPD) device of a DIMM module for determining memory size and optimum timing.
2 nd DIMM Module	1010001xb	Ditto.
Clock Generator	1101001xb	Disable unused clock source and enable spread spectrum.
Thermal Monitor	0101110xb	Set thermal trip and automatic fan on points; Provide current temperature

 Table 2-8 SMBus Connections on South Bridge

*: Where x=1 – READ, x=0 – WRITE.

Table 2-9 SMBus Connections on	Embedded Controller
--------------------------------	---------------------

Device	Address	Usage
Smart Battery	0001011xb	Access gas gauge for getting design/remaining capacity, charging/discharging state, etc.

Smart battery is charged by the PIC, PIC16C534C. It is a processor, operating is independence.

2.7. Display Data Channels (DDC) and GMBus

The VGA controller supports display data channels (DDC) on LCD and CRT interfaces as well as SMBus on SDVO. Thus, the VGA BIOS and driver could determine the resolution and timing of a display device by reading its EDID data. The system BIOS doesn't have to provide callback function for reporting LCD type.

Table 2-10 DDC and GMBus Connections on VGA Controlle

Device	Address	Usage
LCD Panel		Access EDID data for determining the resolution and timing of the display device
CRT Monitor		Ditto.

2.8. LED Indicators

The colors and states of system LED indicators are described at table below.

LED	State	Color	Indication	
Power	Steady On		System power is supplied	
Power	Flashing		S3 (suspend to RAM) state	
Battery-Charging	Steady On		Charge a battery or batteries	
Battery Low Power	Flashing		Battery capacity is below 10%	
Hard Disk	Flashing		Access a hard drive	
E-Mail	Steady On		Have new E-mail(s)	
WLAN	Steady On		Enable the WLAN	
AudioDJ	Steady On		In the Audio DJ mode	
CAPS Lock	Steady On			
NUM Lock	Steady On			
SCROLL Lock	Steady On			

Table 2-11 Colors and States of LED Indicators

2.9. General Purpose Events of South Bridge

The general-purpose inputs of the south bridge could trigger SCI, SMI, and/or wake-up events. These inputs come from LID switch, EC, USB, LAN, modem, CardBus, and audio interfaces. Table 2-14 lists the general-purpose event (GPE) connections.

Source	GPE#	ACPI Mode		Le	gacy Mo	de	
		SCI	SMI	Wake	SCI	SMI	Wake**
Thermal (THRM#)		V				V	
EC's SCI Pin (GPI12)		V				V	
EC's SMI Pin (GPI8)			V			V	
LAN's PME*				V			
Ring Indication (RI#)				V			
Modem CODEC				V			
Audio CODEC				V			
USB0				V			
USB1				V			
USB2				V			
USB3				V			
EHCI				V			
CardBus		V		V			

	Table	2-12	GPE	Connections	on	SB
--	-------	------	-----	-------------	----	----

*: PME – Power Management Event

**: Because the chipset doesn't support S1 state and the BIOS do not support S3 state for none ACPI O.S., either, it actually has no sleep state at legacy mode.

2.10. Events of Embedded Controller

The internal keys and general-purpose input pins are the SCI, SMI, and WKI event sources of the embedded controller (EC). The event sources of this system are shown at table below.

Source	Notification	Trigger Pin		Function
	Code (Hex.)	ACPI Mode	Legacy Mode	
Fn+F1 (FHK1)		SCI	SMI	Simulate a sleep button.
Fn+F2 (FHK2)		SCI	SMI	Switch wireless LAN on/off.
Fn+F5 (FHK5)		SCI	SMI	Decrease LCD brightness.
Fn+F6 (FHK6)		SCI	SMI	Increase LCD brightness.
Fn+F7 (FHK7)		SCI	SMI	Turn off LCD backlight.
Fn+F8 (FHK8)		SCI	SMI	Toggle display devices.
Fn+F10 (FHK10)		SCI	SMI	Turn audio volume on/off.
Fn+F11 (FHK11)		SCI	SMI	Decrease audio volume.
Fn+F12 (FHK12)		SCI	SMI	Increase audio volume.
E-Mail Button (P6.0)		SCI	Х	Run E-Mail application
				program.
Internet Button (P6.1)		SCI	Х	Launch internet browser.
AP1 Button (P6.2)		SCI	Х	Invoke a designated
				application program.
AP2 Button (P6.3)		SCI	Х	Invoke a designated
				application program.
Fn+ESC (FHK13)		SMI	SMI	Break into debugger.
AC_IN (P6.4)		SCI	SMI	Notify if the AC power is
				supplied or cut off.
LID Switch		SCI	SMI	Notify if the LID is closed
BAT_IN# (P5.5)		SCI	SMI	Notify if a battery is plugged
				in or removed
DOCK_IN# (P?.?)		Х	Х	Notify if an IDE device is
				attached or removed.
Any Key being pressed at		WKI	WKI	Wake up a system from sleep
suspend state				state.

Table 2-13 SCI, SMI, and WKI Events of Embedded Controller

NOTE: The WKI (KBCRSM) pin is connected to power button switch. So, it looks like a power button is being pressed when typing any key of internal keyboard.

2.11. Clock

To reduce EMI, it should disable these clock source not being used according. In the system, the clock generator is the clock source for all chipsets and the memory controller provides the clock source for DRAM DIMM modules. The connections of these clock sources are shown at table 2-14 and 2-15.

Table 2-14 Clock Source on Memory Controller

Source Pin(s)	Connected to	Control Register
SM_CK[4:3] SM_CK[4:3]#	DIMM #0	MCHBAR* + 18Ch[1-0]
SM_CK[1:0] SM_CK[1:0]#	DIMM #1	MCHBAR + 10Ch[1-0]

*: GMCH Register Range Base Address (Bus#0/Dev#0/Func#0/Reg#44h).

Source Pin(s)	Connected to	Control Register	Free Running
96MhzT/C	DREFCLK	Byte1 [7]	
27Mhz	N/A	Byte1 [6]	
48Mhz	CLK_SIO_48M and CLK_USB48	Byte1 [5]	
REF0	CLK ICH14	Byte1 [4]	

Table 2-15 Clock Source on Clock Generator

REF1	CLK_SSC_IN	Byte1 [3]	
CPUCLKT/C1	CLK_CPU_BCLK	Byte1 [2]	
CPUCLKT/C0	N/A	Byte1 [1]	
PCICLK5	CLK_Mini PCI1	Byte2 [7]	
PCICLK4	CLK_KBCPCI	Byte2 [6]	
PCICLK3	CLK_LANPCI	Byte2 [5]	
PCICLK2	CLK_CBPCI	Byte2 [4]	
PCICLK1	CLK_MiniPCl2	Byte2 [3]	
PCICLK0	CLK_SIOPCI	Byte2 [2]	
PCICLK_F1	CLK_ICHPCI	Byte2 [1]	Y
PCICLK_F0	CLK_FWHPCI	Byte1 [0]	Y
CPUCLK2/SRCCLK5	CLK_MCH_BCLK	Byte3 [7]	Y
SRCCLKT/C4	CLK_MCH_3GPLL	Byte3 [5]	Y
SRCCLKT/C3_STAT	N/A	Byte3 [4]	Ν
SRCCLKT/C2	CLK_PCIE_ICH	Byte3 [3]	Y
SRCCLKT/C1	N/A	Byte3 [2]	Ν
SRCCLKT/C0	N/A	Byte3 [1]	Ν

3. BIOS Function

The main features of the BIOS are shown at table 3-1. It's major change is not supporting APM function because all supported Operating Systems except DOS are ACPI-Enabled and the core chipset doesn't support S1 sleep (power on suspend) state. It, thus, has no suspend state available at DOS.

Item	Description
BIOS	AMI CORE8;
	4Mbits Firmware Hub (FWH) EEPROM
CPU / Cache	Automatic frequency and cache size detection:
	Dynamic CPU speed control at Windows XP ("Windows Native Processor
	Performance Control") and Windows 2000 ("Intel SpeedStep Technology Applet");
	Static CPU speed control during POST and at DOS.
DRAM	Sizing and timing detection by SPD.
HDD/CDROM	4-drive, Fast DMA, UDMA, fast PIO, block PIO, 32-bit IO, SMART disk, and INT
	13 extensions support; automatic model typing, size detection, and parameters
	setting (drive geometry, transfer mode, block size, LBA); bootable CDROM; hot
	swapping.
FDD	N/A
Booting	Quiet boot; quick boot; multi-boot from HDD, CDROM, LAN (PXE), and USB
	devices peripheral; boot sequence control at setup menu and pop-up boot
	selection menu.
Setup Menu	Press F2 to enter setup menu during POST. For details, please refer to setup
	menu section.
Boot Selection Menu	Press ESC to pop-up this menu to select a boot device for one time.
Display	Multiple P.E.G. controller support; LCD, CRT, and TV presence detection and
	toggle.
Keyboard	US/JP/EU internal keyboards and USB keyboard support.
Mouse	Internal touch pad, PS/2 mouse, and USB mouse Support.
Parallel port	N/A
Security	User & Supervisor password control for setup menu and boot;
	Hard disk locking and password-freezing control;
	USB, LAN, WLAN, MODEM, CardBus, and 1397 interfaces-disabling control.
PnP	Legacy ISA, PnP ISA, PCI and PCIExp devices auto-configuration;
	PnP ISA and PCI run-time BIOS services support.
APM	Not support.
ACPI	C0, C1, C2, C3 (or C4), S0, S3, S4, and S5 power management states; control
	method battery; proprietary on-screen display utility support.
SMBus	SMBus run-time BIOS services.
DDC	Display Data Channel is supported by built-in VGA BIOS.
SMBIOS (DMI)	System Management BIOS v.2.3 support.
	Windows DMI data update interface support.
M-Mode	Dynamic CPU speed control.
Flash	EzFlash during POST; DOS and Windows flash interface support.
Simple Boot Flag	It provides a very simple boot flag register or variable that can be used by an operation
	system to communicate boot options to the system firmware and add-in card option ROMs.
	boot performance base on the installed operation system and previous boots
Others	Davlight savings time: Fast A20: 32-bit BIOS services: graphic setup menu
	(English only).

Table 3-1	Features of	of System BIOS
-----------	-------------	----------------

3.1. Memory

The BIOS automatically detects the amount of memory in the system and configure the DRAM timing based on the SPD data of DIMM module(s) at beginning of POST (Power-On-Self-Test).

3.2. Display

In system BIOS, it includes several copies of VGA BIOS for Intel's built-in P.E.G. controller. The BIOS will automatically detect the VGA chipset vendor and load VGA BIOS accordingly. The VGA BIOS callback function and/or MBI interface are also ready for each VGA controller to select boot display device(s) and toggle them. The display device combinations of each VGA controller are shown at tables in this section. Additionally, the resolutions and timings of display devices are determined by their EDID data.

Display Device(s)	Pipe A	Pipe B
CRT	Y*	Ν
LCD	Ν	Y
TV	Y	Y
CRT + LCD	Ν	Y
CRT + TV	Y	Ν
LCD + TV	Ν	Ν
CRT + LCD + TV	Ν	Ν

Table 3-2 Display Device Combinations for Intel's VGA

*: Y – could display on the pipe; N – couldn't display on the pipe.

3.3. Enhanced IDE

The BIOS supports the LBA re-mapping method to translate the geometry of a hard disk drive and the INT 13 extension functions for removable devices and hard drives. On the system, it has two built-in IDE controllers: one is parallel ATA (PATA) interface and the other is serial ATA (SATA) interface that could be configured to run at legacy IDE mode or AHCI mode. Both controllers support only one channel, i.e. two controllers totally support two channels. The BIOS will configure these two IDE controllers based on the attached IDE drives and user's selection at setup menu. The configurations are shown at table below.

	i dan di di titi ta da di titi di								
Configuration	Present Device(s)	Cont	Controller		ig Mode				
Selection		PATA SATA		PATA	SATA				
Compatible	None or PATA only	Enabled	Disabled	Legacy					
Compatible	SATA only	Disabled	Disabled		Legacy				
Compatible	SATA & PATA	Disabled	Disabled		Legacy				
Enhanced	Any	Enabled	Disabled	Legacy	Native/AHCI				

Table 3-3 PATA and SATA Configurations

Because none of current Windows Operation Systems (O.S.) supports AHCI mode for IDE drives, it will run into a blue screen when installing a Windows or failure to boot up an installed Windows not loading AHCI mode driver if selecting "Enhanced" configuration. Please check out the README file of Intel's IAA driver to load the AHCI mode driver when installing a Windows.

Additionally, the BIOS also supports the IDE hot swapping function for the drive on PATA controller if the booting hard disk drive is on SATA controller.

3.4. Legacy USB

In addition to USB keyboard and mouse, the BIOS also support USB 2.0 and 1.1 peripheral devices including flash, hard disk, and optical drives for Operating Systems having no USB driver. In DOS, it should load an ASUS's proprietary USB driver to support DVDROM/CDROM drives.

3.5. Plug and Play

The BIOS supports the PnP, PCI, and ACPI specifications for dynamically allocating system resources. The resource allocation of system board devices is listed at table below.

Device	Connect	ct Resources				
	Туре	I/O (Hex)	IRQ at	IRQ at	DMA	Memory (Hex)
			PIC	APIC		
DMA Controller	Static	00~0F, 81~8F				
PIC Controller	Static	20~21, A0~A1				
Local APIC	Dynamic					FEE00000~FEEx xxxx
IOAPIC	Dynamic					FEC00000~FECy yyyy
System Timer	Static	40~43	0	0		
RTC	Static	70~75	8	8		
System Speaker	Static	61				
System Board	Static	80				E0000~FFFFF
NB Chipset (System Board)	Static					E0000000~ EFFFFFF, FED14000~ FED17FFF, FED18000~ FED18FFF, FED19000~ FED19FFF
SB Chipset (System Board)	Static	400~41F, 480~4BF, 800~87F				FED1C000~ FED1FFFF
Embedded Controller	Static	60, 62, 64, 66	1	1		
Math Coprocessor	Static	F0~FF	13	13		
Touch Pad / PS/2 Mouse	Static		12	12		
Video Controller	Static	3B0~3BB, 3C0~3DF	11			A0000~BFFFF, C0000~CFFFF
Serial Port	(NO)					
Fast IR / IrDA	Static	2F8				
ECP, Parallel port	Static	378				
FDC	(NO)					
PATA IDE Controller (Compatible Mode)		DISABLED				

Table 3-4 System Resource Allocation

SATA IDE Controller (Compatible Mode)	(NO)				
PATA IDE Controller (Enhanced Mode)	Static	1F0~1F7, 3F6	14	14	
SATA IDE Controller (Enhanced Mode)	(NO)				
CardBus Controller	Dynamic	3E0~3E1			
1394 Controller	Dynamic				
Audio Controller	Dynamic				
Modem Controller	Dynamic				
USB Host Controller	Dynamic				
LAN Controller	Dynamic				
WLAN Controller	Dynamic				

Note: 1. The dynamic resource of devices will be changed if users change the settings. 2. The system has no super I/O.

3.6. Power Management

The BIOS supports C0, C1, C2, C3 (or C4), S0, S3, S4, and S5 power management states for ACPI-Enabled Operating Systems. In DOS, it has no power management because the SB chipset doesn't support S1 sleep state. It doesn't support Advanced Power Management (APM), either. Figure 1 shows the global system power states and transitions.

Figure 1 Global System Power States and Transitions

3.6.1.C States

To enhance system performance and save battery life, the BIOS uses the _CST control method to dynamically report the supported "C States" when powered by AC or by DC.

- Powered By AC: C2.
- Powered By DC: C2, C4

In _CST control method, it reports "level 4" I/O port at C3 state package buffer to force system entering C4 state when an O.S. puts CPU to C3 state because C4 state is not a standard "C" state of ACPI specification and not implemented by current Windows O.S. The system supports C2 pop up and pop down function. The C0 and C1 states are supported on all power sources. Any IRQ, SMI#, SCI, bus master, or FERR# event will bring the system to C0 state from C1, C2, C3, or C4.

For those O.S. such as Windows Me doesn't recognize _CST control method, the BIOS always reports the system supports C2 and C3 at "Fixed ACPI" (FACP) description table. The worst-case hardware latency times of C2 and C3 are 10 and 100 microseconds, respectively.

3.6.2. Sleep States

- **1. S0** state: The CPU and all devices are working.
- 2. S3 state: The CPU and PCI busses are powered off. All PCI devices must either be powered-off or isolated and the embedded controller is put into suspend sate. However, the system memory and graphic frame buffer are powered and refreshed by the memory controller and the graphics controller, respectively. The system provides a 32kHz clock (SUSCLK) in this suspend mode to support refresh of these memory subsystems. Only enabled "resume event" such as internal keyboard, RTC alarm, power button, LAN, WLAN, Modem, USB device(s) can bring the platform out of this sleep state.
- 3. S4 state: The context of entire system devices and memory are saved to disk. All components are powered-off and all clocks are stopped. Any enabled "resume event" such as power button, RTC, and/or LAN can bring the platform out of the S4 state.
- 4. S5 state: Same as S4 except not saving system context.

Resume Event	S 3	S4	S5	Screen
RTC Alarm (IRQ 8)	Y	Y	Y	OFF
Power Button	Y	Y	Y	ON
LID Switch	Y			ON
Modem RI#	Y			OFF
PCI PME# (LAN)	Y	Y	Y	OFF
Azalia # (Modem CODEC)	Y			OFF
USB	Y			ON
Any Key*	Y			ON

Table 3-5 Wake Up Events

*: The EC's "Any Key" wake-up event pin is connected to the power button switch.

3.7. CPU Speed Control

To fulfill the Geyserville III technology of Intel's Pentium-M CPU, the BIOS implements the ACPI control methods including _PDC, _PCT, _PSS, and _PPC for supporting "Windows Native Processor Performance Control" to dynamically change CPU speed based on system loading and power scheme selected in Windows XP.

•	_PDC:	Called by native processor performance driver to pass it's capabilities to BIOS; The BIOS saves the capability flag for other control methods. This flag indicates if a
		native performance processor driver is loaded.
•	PCT:	If native driver is loaded, the processor native interface is used for the Performance
	_	Control Object by declaring the CPU's performance control and status registers as
		functional fixed hardware objects. Otherwise, the SMI interface is used for the
		Performance Control Object by declaring the ACPI command (0x82) and status
		(0x83) ports as performance control and status ports.
•	_PSS:	If native driver is loaded, reports the control and status values based on CPU's
		performance control and status registers. Otherwise, these values are reported
		based on ACPI command and status ports.
•	_PCT:	Report "0" as the highest state to allow all states to be used when running on both

AC adapter and battery (DC).

The BIOS also supports "Enhanced Intel SpeedStep Technology System Management Mode Interface" for Intel's SpeedStep Applet in Windows 2000. The O.S. and Intel's SpeedStep Applet program will issue software SMI to get BIOS support. The default SMI port is 0B2h at Intel's Applet program. Here are functions on this SMI interface:

•	DISABLE:	SMI Port = OS Command value located in ACPI FADT table offset 55. Called by the O.S. supporting native processor performance control. The CPU speed transition should be controlled by the O.S. The BIOS only responds to get status and reports to the applet.
•	INITIALIZE:	SMI Port = 81h. Detect and identify operating states of onboard CPU.
•	CONTROL:	SMI Port = 82h, EAX = 47534982h, EBX = 0.
		Enable or disable SMI applet interface.
•	GET STATUS:	SMI Port = 82h, EAX = 47534982h, EBX = 1.
		Reports to the applet software the current CPU state, the maximum number of states supported, the current available number of states, the SpeedStep capability of the CPU, the setup mode, the AC status, the revision of this SMI interface, and the current state of CPU throttling.
•	SET STATE:	SMI Port = 82h, EAX = 47534982h, EBX = 2. Initiate a transition to the requested state.
•	SET SETUP:	SMI Port = 82h, EAX = 47534982h, EBX = 3. Save changes of operating mode to the CMOS register location of the setup menu item for Intel's Applet control.
•	GET INFO:	SMI Port = 82h, EAX = 47534982h, EBX = 4. Reports to the applet software the highest and lowest performance states as well as the duty cycle of throttling.
•	GET STATES:	SMI Port = 82h, EAX = 47534982h, EBX = 5. Reports the frequency of all supported states.

For details, please refer to the Intel's orange document "RS – Geyserville Technology BIOS Porting Guide".

3.8. Thermal Management

To prevent a CPU from being over-heated, the BIOS implements the active cooling policy to keep CPU and system temperatures as low as possible. Additionally, the thermal control circuit (TCC) of a CPU is also enabled to let it perform an automatic performance state transition to a lower operating point as specified in the GV_THERM control register if the CPU temperature is over the maximum operating temperature or to assert THERMTRIP# signal to shutdown the system if the CPU temperature keeps rising and reaches a temperature where permanent damage to the processor is imminent. The temperatures of these two trip points are set at on-die digital thermal sensor of a CPU in a factory and different among all family and/or stepping CPUs.

The thermal trip points of the system are shown at table 3-8. The control mechanism for both ACPI and legacy modes is as follows:

1. Set the lowest bus ratio to control register GV_THERM and enable TCC control of a CPU to let

CPU automatically transit CPU speed back and forth near maximum operating temperature.

- 2. Initialize the automatic fan control thermal sensor to drive fan on temperature to 40° C and turn fan off near 35° C if it was on. The fan will be automatically turned on and off.
- **3.** At initialization or whenever a thermal trip event occurs, do the action for the first true condition listed from highest to lowest priorities at first column in table 3-9.
- 4. In ACPI-enabled O.S., reports _AC0, PSV, and _CRT temperatures listed at table 3-8 as well as implementing thermal zone related control methods (_TMP, _TSP, _SCP, _TC1, _TC2), name objects (_PSL, _AL0), fan device node "PNP0C0B", fan's power resource (_STA, _ON, _OFF), and event handler (_L00).

Temperature	CPU Temperature (°C) at Transition State							
Trend	Fan Off	Fan On (_AC0)	Tran. Speed Back	Tran. To Lowest Speed	Throttling Off	Throttling On (_PSV)	Critical Shutdown (_CRT)	CPU Thermal Trip
Up		40		> 90*		100	105	125*
Down	35		< 85		90			

Table 3-6 Thermal Transition States

*: Dothan Processor. Please see the "EMTS" document of a processor to check out these two values.

Table 3-7 Thermal Control Actions

*: The thermal sensor and CPU will automatically turn on/off fan and transit CPU speed, respectively. **: +/- 2°C to/from high and low thermal trip limits to prevent the CPU temperature from frequently jumping back and forth at a transition state and triggering too many thermal events.

For overall ACPI BIOS thermal control activity, the thermal management can be categorized into two strategies:

1. A thermal device triggers an event to ACPI BIOS, the BIOS notifies to the Operating System to process such event. The event trigger temperature setting of the device has an upper and lower limit, when the CPU temperature goes above the upper limit or below the lower limit, the

thermal event become active.

2. Operating System reads current temperature (through ACPI BIOS) periodically and process the thermal handler depends on its thermal policy.

3.9. Brightness Control of LCD

LCD brightness is controlled via Intel DPST (Display Power Saving Technology). It's a advance power saving of LCD. BIOS will corporate with VGA driver to control LCD brightness for max power saving without impact user view. Intel DPST will analyze display image produced by the OS or application. Intel DPST applies an image-specific enhancement to increase image contrast, brightness and or attributes with decrease to backlight brightness. This produces an image with similar user-perceived quality as the original image.

Without VGA driver: If users press Fn-F5/Fn-F6 (brightness down/brightness up), BIOS invoke video BIOS function call to change brightness. This will change LCD brightness directly.

With VGA driver: If users press Fn-F5/Fn-F6 (brightness down/brightness up), BIOS invoke video BIOS function call to change brightness. VGA driver will read it and update some setting accordingly. Then set LCD brightness.

Inter Baok					
Calling Regist	Calling Registers:				
AX	5F61h, Local Flat Panel Support function				
BH	08h, Set Backlight Control sub-function				
BL	Brightness Level Setting (0-255), where 0=minimum brightness and 255= maximum brightness				
Calling Regist	Calling Registers:				
AX	005Fh, Function supported and successful AX				
	015Fh, Function supported but failed				

INT 10h Backlight Brightness Interface

3.10. Embedded Controller

As well as keyboard controller, the embedded controller also includes the smart battery host controller and ACPI embedded controller (EC).

3.10.1. Functional Events

To easily adjust some system hardware settings such as flat panel backlight, audio volume, display device(s) or quickly bring up some predefined applications, the system implements the combination hot keys and buttons. When pressing those hot keys or buttons, the EC triggers SCI or SMI events depending on if ACPI mode is enabled or not. Additionally, the EC also triggers SCI or SMI event when plugging-in or removing an AC power adapter, a battery, or an IDE device at swapping bay. For the event codes and types, please refer to the section entitled "Events of Embedded Controller".

For SMI events, the EC's SMI handler of BIOS at SMM mode will query the SMI notification code of the EC event being triggered and dispatch its corresponding handler to toggle display devices, adjust LCD brightness, adjust audio volume, or change device in/out state and trigger polarity accordingly. For SCI events, the EC driver will query the notification code, say 2Ah, and call the corresponding _Q control method, say _Q2A, to handle the event. In turn, the _Q control method notify ASUS's proprietary ATK driver to show On-Screen-Display (OSD) icons and do actions accordingly. Please refer to the ATK driver specification for the notification values of those events.

3.10.2. Wake-Up Event

The EC will be put into suspend state and powered when a system enters S3 state. It will pulse its wake-up pin when any key of the internal keyboard is pressed. Because the wake-up pin is connected to the power button switch, it, thus, seems to press the power button to wake the system.

3.10.3. Battery System

The battery system includes a charger and two smart batteries. Both charger and batteries are connected to the SMBus host interface of EC. A general-purpose pin is used to select one of two batteries to be connected to the SMBus interface at a time. The working mechanism of the battery system is as follows:

- The charger will stop charge the battery when the following condition is detected.
 - The temperature of the system is too high.
 - The battery voltage is too high.
- Battery Life is around 4/2.5 Hours for 8 cells & 4cells.

Note that the battery life depends on different configuration running. (E.g. the battery life is shorter with CDROM running, the battery life is longer with document keyin only; battery life is short while power management is disabled, battery life is longer while power management is enabled.)

- Battery reading methodology is through power meter applet of control panel in Windows. The BIOS passes battery information to ACPI-enabled O.S. via control methods _BIF and _BST.
- When the battery capacity remains 10%*, the charger will generate a battery warning SMI at none ACPI-enabled O.S. environment or a SCI at ACPI-enabled O.S. environment.
- When AC power is supplied, the battery system will do the following action:
 - The charger will charge the Battery.
 - The Battery Charging Indicator will turn on if the battery is in changing mode.
 - The "Battery Low" warning condition will be removed.

When AC or battery power is supplied or removed, the EC will trigger events and the EC driver will call the _Q control methods for AC and battery to handle these power events and notify O.S. to re-emulate the state and information of the battery system.

3.11. Security

To protect storage data and system, the BIOS implements several security mechanisms including setup menu protection, booting prevention, hard disk lock, I/O peripheral interface disable, and optional TMP module function.

3.11.1. Setup Menu and Booting Security

There are a supervisor and a user password for entering setup menu and booting a system. It could select to check these passwords only when entering setup menu. Please refer to "Security Menu" section for detail.

3.11.2. I/O Interface Security

The supervisor of a system could disable the modem, LAN, wireless LAN, USB, CardBus, 1394, and

optical drive devices at setup menu and limit user's access right to re-enable them.

3.11.3. Hard Disk Drive Protection

A user could set a password on a hard disk drive to lock it. At same time, a back door master password is also set on the drive. The hard disk will be locked when it's being hard reset. During POST, the BIOS will ask a user to input a password to unlock the drive. This password could be the user or master hard disk password. If the master password is input, the hard disk lock function will be disabled forever unless being re-locked again. Additionally, the user and master passwords are frozen after the drive is unlocked to prevent them from being changed by any application program. This input master password would be different everyday.

3.11.4. Trusted Platform Module (TPM) Based Security

The TMP module is an optional device and functions like a smart card. The BIOS will initialize it and load it's driver accordingly. However, it needs other licensed application program to utilize it for security.

3.12. Crisis Recovery

A proprietary debug card is used for doing crisis recovery. The steps are:

- 1. Prepare one ISA EPROM with correct bios image.
- 2. Insert the ISA EPROM into a debug card
- 3. Select SW1:ON and SW3:OFF on debug card
- 4. Plug the debug card into a system.
- 5. Turn on the system.
- 6. The BIOS will execute normal POST and turn on screen before automatically recovering the system BIOS.
- 7. The BIOS will shutdown the system after finishing recovery.
- 8. Take out the debug card and turn on system power to boot from system BIOS.

3.13. Supported Utility

The BIOS supports 3 flash utilities that are running during POST, at DOS, or at Windows. In addition, it also supports a DOS and a Windows SMBIOS (DMI) utility for changing data of type 1, 2, and 3.

3.13.1. Extended 32 Bits Application Interface

4. Setup Menu

A5EP system BIOS allows users to change some system hardware/function settings during POST (power on self test) stage, users may hit F2 key to enter SETUP mode in POST, the setup feature is categorized into 6 menus described in next few sections

4.1. Main Menu

Main menu describes system overall information with some user changeable setting, it contains below items:

AMI BIOS Setup Utility								
Main /	Advanced	Display	Security	Power	Boot Exit			
System Ov	erview							
AMIBIOS Version	: 200				[SHIFT-TAB] to select at field. Use [+] or [-] to configure system Time.			
Processor								
Туре	: Intel(R) P	entium (R) M						
Speed	: 2133MHZ							
System Size	: 1008MB							
System Time System Date		[08:15:59] [Thu 05/03	8/2005]					
	V02.56	(C) Copyright	1985-2004, Am	nerican Meg	atrends, Inc.			

- 1. Version: [xxxx.xxx] ← Current version for the system bios
- 2. Type [String]: What kind for CPU
- 3. Speed: The BIOS auto detect CPU speed, It's only show, so user don't modify
- 4. System Time: [hh/mm/ss] ← Current time
- 5. System Date [mm/dd/yy] ← Current date

4.2. Advanced Menu

In advanced menu the users may configure I/O device resource such as I/O base, interrupt vector or DMA (Direct Memory Access) channel, some auxiliary settings may be changed as well. Detailed I/O device setting are described below:

AMI BIOS Setup Utility								
Main Advanced	Display	Security	Power	Boot	Exit			
Advanced Settings				Configure the ID	E			
 Warning: Setting wron, system to malfunction IDE Configuration Start Easy Flash 	aevices							
Internal Pointing Devic Internal Numeric Pad I	e Lock	[Enabled] [Enabled]						
V02.3	6 (C) Copyright	1985-2002, Ar	nerican Meg	atrends, Inc				

- 1. IDE configuration: See 5.2.1
- 2. Internal pointing device: [Enable] ← Touch Pad enable/disable you can choice
- 3. Internal Numeric Pad Lock [Enable] ← Num LK (Number Lock) enable/disable

4.2.1.IDE Configuration

4.2.2. Primary Master/Slave IDE

Advanced Primary IDE Master Sicconnection Device : Hard Disk Vendor : HTS541080G9AT00 Size : 80.0GB LBA Mode : Supported Block Mode : 16Sectors PIO Mode : 4 Async DMA : Multiword DMA 2	elect the type of device onnected of the system
Primary IDE Master Sicconstruction Device : Hard Disk Vendor : HTS541080G9AT00 Size : 80.0GB LBA Mode : Supported Block Mode : 16Sectors PIO Mode : 4 Async DMA : Multiword DMA 2	elect the type of device onnected of the system
Device: Hard DiskVendor: HTS541080G9AT00Size: 80.0GBLBA Mode: SupportedBlock Mode: 16SectorsPIO Mode: 4Async DMA: Multiword DMA 2	Sintected of the system
Ultra DMA : Ultra DMA-5 S.M.A.R.T. : Supported	
Type[Auto]LBA/Large Mode[Auto]Block (Multi-Sector Transfer)[Auto]PIO Mode[Auto]DMA Mode[Auto]S.M.A.R.T.[Auto]32Bit Data Transfer[Enabled]	

At system boot, the Intel Ultra ATA Storage Driver configures each ATA/ATAPI device to transfer data at particular transfer modes. These transfer modes are defined by ATA standards, and are either Programmed I/O (PIO) or Direct Memory Access (DMA or UltraDMA) type transfers. The Intel Ultra ATA Storage Driver usually configures devices for their fastest capable transfer modes; however, there may be times when a different (perhaps slower) transfer mode is appropriate for a particular device or system configuration.

For hard disk and CD-ROM drives BIOS detect them automatically. The users may enter the selected (highlighted) item to get more detailed information, which contains 3 selectable setting:

[Auto]: BIOS default setting.

[User Type HDD]: Users may configure the disk geometry by changing below item:

- Translation Methods
 - Cylinders
 - Head
 - Sector
 - Multi-Sector Transfer
 - Smart Monitoring
 - PIO Mode
 - Ultra DMA Mode

[None]: Hide the drive.

4.3. Display Menu

AMI BIOS Setup Utility							
Main	Advanced	Display	Security	Power	Boot	Exit	
Configure	advance setti		Select Boot display devices(s).				
Boot Disp	olay devices:		[CRT+LCD]				
TV Standa	urd		[NTSC]				
V02.36 (C) Copyright 1985-2002, American Megatrends, Inc							

Boot Display devices: [LFP / CRT / CRT+LCD]←Select boot display device, default mode is LFP&CRT mode.

<u>**TV Standard</u>**: [NTSC/PAL/PAN_M/PAL_60/NTSC_J/PAL_CM/PAL_N/SCART_RGB]</u>

4.4. Security Menu

AMI BIOS Setup Utility						
Main Advanced	Display	Security	Power Sa	iving	Boot	Exit
Security Settings						
Supervisor Password User Password	: Not Installe : Not Installe	ed ed		The pa drive of here. I for the	assword fo can be set Power mus hard drive	or this hard or cleared st be cycled e to lock
Change Supervisor Passw	vord					
Change User Password						
Clear User Password						
Boot Sector Virus Protection [Disable] I/O Interface Security						
Hard Drive Security						
Hard Disk Password: Not Primary Master HD Pass	t Installed word					
V02.36 (C) Copyright	198 <mark>5-2002,</mark> A	merican Megat	trends,	Inc	

AMI BIOS Setup Utility								
Main Advanced	Display	Security	Power S	aving	Boot	Exit		
Security Settings								
Supervisor Password User Password	: Not Instal : Not Instal	led led		The pa drive o here. I for the	assword fo can be set Power mus hard drive	or this hard or cleared st be cycled e to lock		
Change Supervisor Passw	vord							
Change User Password								
Clear User Password		11.1						
Boot Sector Virus Protection [Disable] I/O Interface Security								
Hard Drive Security								
Hard Disk Protection	[Dis	abled]						
V02 36 (C) Copyright	1985-2002 A	merican Med	atrends	Inc			

BIOS supports two levels of password for security protection:

1. <u>Supervisor password</u>:

Users may set, change or erase system password, the password data is saved in non-volatile device (CMOS), system password check is done during POST (Power On Self Test). The BIOS will prompt a dialog message to ask user for password check when:

The system has password stored, and

"Password on boot" setting in BIOS SETUP is enabled.

If password verification fails for 3 times, the system BIOS will halt the machine to inhibit users from operating.

2. <u>User Password</u>

If other has modified your setting of BIOS, you can setting the function [Enable],

And type in your password and confirm, don't modify BIOS setting if no password.

3. <u>Hard disk password</u>:

Users may set, change or erase hard disk password, the password data is stored in the drive itself, the BIOS prompts a dialog message for hard disk password verification whenever it finds the hard disk locked in POST.

If hard disk password verification fails for 3 times, the system BIOS will halt the machine to inhibit users from operating.

4.5. Power Menu

AMI BIOS Setup Utility								
Main Advanced	Display	Security	Power	Boot Exit				
 Power management Se LCD Power Saving Wake-up On LAN Start Battery Calibra 	tting ttion	[Enabled] [Disabled]		Press Enter to start calibrating a battery. The calibration should charge the battery to full and then discharge it to empty.				
V02.31 (C) Copyright 1985-2002, American Megatrends, Inc								

- 1 <u>LCD Power Saving</u>: LCD exhausts the most part of power while the system is operating. A5EP notebook system BIOS support auto backlight saving mode. When the system BIOS detects AC adapter removal, the LCD brightness is tuned down to 80% of its original setting, and back to normal when AC adapter is back inserted.
- <u>Wake-Up On LAN</u>: Enable it, system can wake up form magic package from Ethernet.
 <u>Battery refresh</u>: After long time incomplete charge/discharge cycles, the battery meter be
- <u>Battery refresh</u>: After long time incomplete charge/discharge cycles, the battery meter becomes less and less accurate (the total power capacity is not significantly affected, however). Battery gauge needs to "*learn*", this item helps users to recalibrate the battery gauge. In the learning process, users need to follow system BIOS instruction to I Insert/remove the AC adapter so that a complete reset and learning cycle may start.

4.6. Boot Menu

AMI BIOS Setup Utility							
Main Advanced Display	Security	Power S	aving	Boot	Exit		
Boot Settings			Configu	re Setting	e during		
 Boot Setting Configuration 			system	Boot	suunig		
► Boot Device Priority							
Hard Disk Drives							
► Removable Drives							
ATAPI CDROM Drives							
Onboard LAN BOOT ROM	[Disabled]						
V02.31 (C) Copyright 1985-2002 American Megatrends Inc.							

In this menu users can decide the boot sequence, as long as the device with highest boot priority exists, system BIOS will boot from it, device boot priority is adjusted by pressing "+","-" or space key on the selected (highlighted) item. 4 bootable devices for A5EP system are listed in this menu (BIOS default boot sequence):

- 1. **<u>Removable device</u>**: ← Legacy floppy.
- 2. **IDE Hard Drive:** ← hard disk.
- 3. **ATAPI CD-ROM**: ← CD-ROM
- 4. <u>Network Boot:</u> LAN

4.7. Exit Menu

AMI BIOS Setup Utility								
Main Advanced Display	Security	Power Sa	aving Boot Exit					
Exit Options								
Save Changes and Exit Discard Changes and Exit Discard Changes			F10 key can be used for this operation.					
Load Optimal Defaults								
V02.36 (C) Copyright 1985-2002, American Megatrends, Inc								

Exit BIOS setup, users may make final decision if they want to save the change just made, or load BIOS default setting, lists are:

- Save changes and Exit
- Discard changes and Exit
- Discard Changes
- Load Optimal Defaults